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Abstract. A new type of spatio-temporal correlation function for the process approaching the self-organized
criticality is investigated within the Bak-Sneppen model for biological evolution. In terms of the “directional
shorter distance” between the two sites with minimum fitness at two successive updates, the correlation
function is defined and studied numerically for the nearest- and random-neighbor versions of the model.
Qualitatively different behaviors of the jump of the minimal site in the two models are presented, and the
behaviors of the correlation functions are shown also different.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 87.10.+e Gen-
eral theory and mathematical aspects – 64.60.Ak Renormalization-group, fractal, and percolation studies
of phase transitions

1 Introduction

The phenomenon of “self-organized criticality” (SOC) has
become a topic of considerable interest [1–8] because of the
potentially wide applications to complex systems ranging
from the behavior of sandpile and the description of the
growth of surfaces to generic description of biological evo-
lution. One of the key features of SOC is that the dynamics
of complex systems in nature does not follow a smooth,
gradual path. Instead it often occurs in terms of punctua-
tion, or “avalanches” in other word. Numerous numerical
studies have found power law distributions for the size and
lifetime of avalanches and claimed SOC to occur in many
specific models, and the transition to the SOC state was
studied in [9–11]. Such complexity also shows up in sim-
ple mathematical models for biological evolution far from
equilibrium.

It seems that the phenomenon SOC cannot be ade-
quately characterized by the power-law distributions of
avalanche size and lifetime, as concluded in [12]. In [12]
were shown “some striking observable differences be-
tween two ‘self-organized critical’ models which have a
remarkable structural similarity”. The two models, as
called nearest- and random-neighbor versions of the Bak-
Sneppen (BS) model, were introduced in [13–15] and used
to mimic biological evolution. The one-dimensional BS
model involves L sites on a circle. Each site represents a
species in the “food-chain”. BS model provides a coarse-
grained description of the evolution of the ecosystem of in-
teracting species driven by mutation and natural selection.
In computer simulations of the model, the L sites can be
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numbered 1, 2, . . . , L in clockwise order on a circle, so the
sites numbered 1 and L are nearest neighbors. Of course,
the starting site for the numbering can be arbitrary. Ran-
dom numbers are assigned to each site and are taken as
a measure of the “survivability” of the species, therefore
they are called fitness. Initially, the random number on
each site is drawn uniformly from the interval (0, 1). In
each update, the least survivable species with minimum
fitness is to be found. In the local (or nearest-neighbor)
version of the BS model, the evolution rule demands that
the minimal site and its two nearest neighbors undergo
fitness mutations and obtain new random numbers which
are also drawn uniformly from (0, 1). In the second ver-
sion, K − 1 other randomly chosen sites besides the mini-
mal one are involved in the fitness update (so this version
is called random-neighbor model). As shown in [15–17],
the randomness of the neighbors in each fitness update
makes the second version analytically solvable. Investiga-
tion in [12] showed that some behaviors of the nearest- and
random-neighbor models are qualitatively identical. They
both have a nontrivial distribution of heights of minimum
fitness, and each has power-law avalanche size and lifetime
distributions. But the spatial and temporal correlations
between the minimum fitness show different behaviors in
the two models and thus can be used to distinguish them.

In [18] a spatio-temporal correlation between the loca-
tions X(s) of minimum fitness at two consecutive updates
is newly defined and investigated. The spatio-temporal
correlation is an important topic in the study of SOC since
the word “self-organization” used in contemporary stud-
ies for complex systems refers to a dynamical process in
which a complex system starts from a state without corre-
lation and ends up to a complex state with a high degree
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of correlation in both space and time dimensions. So, the
process for a system to approach its SOC state should be
characterized by the increasing strength of some properly
defined spatio-temporal correlation functions. To the best
of our knowledge, only a few attempts have been made
along this direction. This paper is a new attempt along
this line. In this paper, a new spatio-temporal correlation
function is defined and investigated.

This paper is organized as following. In Section 2, we
will discuss the jump of minimal site and the correla-
tion between two minimal sites at two successive updates.
Then in Section 3 we define a new spatio-temporal cor-
relation function based on the jump of the minimal sites
discussed in Section 2. Section 4 is the main conclusion.

2 Distribution of the jump of the minimal site
and correlation

We begin with the local version of the BS model. Though
an infinite series of exact equations can be derived for
the BS model [19], an exact calculation is not possible for
quantities such as the critical value and various exponents.
All investigations show that the spatial and/or temporal
correlations play important roles for the system approach-
ing the critical point. To see how the spatio-temporal cor-
relations in the process to its SOC state in the BS model
are generated in this model, one can look at the evolution.
Denote s the number of updates from the initial state. In
the first a few updates from the initial state the location
X(s) of the minimum fitness is random and can jump
throughout the whole lattice due to the independence and
randomness of the fitness on all sites, and X(s) can take
a random value from 1 to L with equal probability, if the
simulation is repeated many times. A useful quantity to
describe the evolution is the gap G(s) which is defined
as the maximum of the minimum fitness before sth up-
date step. When a gap G is for the first time reached,
all sites have fitness not smaller than the gap. In the up-
dates followed, the sites involved form a compact set in the
one-dimensional BS model, and only those sites may have
fitness less than G, before a higher new gap is reached.
So, it is clear that the random location X(s) of minimal
site at time s should be near the former location X(s− 1)
as long as the gap G remains unchanged. Therefore, the
distribution of X(s) will be peaked at X(s− 1) when s is
large. With the update going on, X(s) has stronger and
stronger tendency to be in the neighborhood of X(s− 1)
and the peak will be more and more obvious. Such a peak
indicates the existence of correlation between X(s) and
X(s− 1). So that correlation between X(s) and X(s− 1)
appears naturally.

To describe the neighboring relation between X(s) and
X(s−1), a directional shorter distance ∆(s) is introduced
in [18]. Generally ∆(s) should be defined as a vector in
higher dimensional BS model. For this one-dimensional
study, the direction of vector ∆(s) can be represented by
a sign. Thus, ∆(s) can have positive or negative values.
The absolute value of ∆(s) can be thought as the shorter

distance between X(s) and X(s−1) on the circle. In other
words, |∆|−1 equals to the number of sites between X(s)
and X(s−1) on the shorter curve on the circle. Therefore
∆ is independent of the numbering of the sites. If the
shorter curve from X(s − 1) to X(s) is clockwise, ∆(s)
is positive. Otherwise, it is negative. For definiteness, we
assume −L/2 ≤ ∆(s) < L/2. Then we have

|∆(s)| =
{
|X(s)−X(s− 1)| if |∆(s)| < L/2
L− |X(s)−X(s− 1)| else.

(1)

Obviously, as a measure of the jump of the minimal site
in the updates, ∆(s) is also random for a simulation pro-
cess from the initial state due to the randomness of the
locations of the minimal sites in the update process. As
mentioned in [10], the minimal site jumps throughout the
system in a correlated and anomalous fashion which has
some similarity to the usual Lévy flight picture. In [10]
the jump is defined as r = |X(s) − X(s − 1)| (the nota-
tion used there is different), and the distribution of jumps
is obtained from a simulation of 5 × 107 update steps in
the stationary state for a system with size L = 3000. In
other words, the jump distribution is calculated in [10]
over a long period of update time. On the contrary, the
directional shorter distance discussed in current paper is
defined for a specific update step s from the initial state,
so its distribution can be obtained only from an ensemble
of simulations from the initial state. In addition, the abso-
lute value of ∆(s) is not always equal to |X(s)−X(s−1)|
for a given numbering scheme for the sites. Thus ∆(s) in
this paper is different from the jump r used in [10].

The meaning of the distribution of ∆ is also different
from that of x in the spatial correlation function Px(x)
used in references [20,12]. First, x is no less than 0 in
references [20,12], but ∆ in this paper can be positive
and negative. Second, no time information is recorded in
Px(x), i.e., Px(x) is calculated for the whole evolution
process. But the distribution of ∆ is obtained for specific
scaled time t from an ensemble of evolution from the ini-
tial state by counting ∆ at that update step. Therefore,
the distribution of ∆ contains both spatial and temporal
information about the evolution process.

To have a look at the distribution of ∆(s), 0.5 million
simulations from the initial state are performed for lattices
with different size L. As suggested in [21], the number s of
update steps from the initial state is a natural but not the
best quantity for the description for a system to approach
its SOC state, since the speed of the process depends on
the size L of the lattice in the problem. The larger the
system size L, the slower the process. A better quantity is
the scaled time t = s/L for the one-dimensional BS model.
The scaled time t has a simple physical meaning. In the
one-dimensional BS model, this quantity is equal to one-
third of the average number of updates undergone for each
site. For illustration, the distribution of ∆(s) is shown at
t = 2.0, 4.0, 6.0 and 8.0 for L = 200, 400, 600 and 800 in
Figure 1. It can be seen that for each t ∆ is more likely to
take small values. The larger t, the larger the probability
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Fig. 1. Distribution of the directional shorter distance ∆ in
the local version of the BS model for systems with L = 200,
400, 600 and 800 at proper time t = 2.0, 4.0, 6.0 and 8.0. The
distribution is normalized to the number of simulation events.

for ∆ to take small values, thus the higher the peaks in
Figure 1 with lower tails for larger |∆|. This is an indica-
tion of the local property of the evolution of the nearest
version of the BS model. In fact, ∆ can take large values
when and only when an avalanche is over and a larger new
gap is reached for the first time. At those update steps,
the numbers assigned to the sites distribute independently
and uniformly above the gap, therefore each site has the
same probability to be the next minimal site, so that ∆
can, with equal probability, take any possible integer value
from −L/2 to L/2− 1 when L is even, as used in present
discussion.

3 Correlation between two successive minimal
sites

The distribution of directional shorter distance between
two successive minimal sites in the evolution can be used
to measure the correlation between X(s) and X(s−1). As
mentioned above,∆ can take any possible value with equal
probability if there is no correlation between the locations
of minimum fitness at two consecutive updates. The fact
that there is much larger probability for ∆ to take small
values reveals the existence of correlation between X(s)
and X(s− 1). Since the peak in ∆ distributions increases
with t, indicating that X(s) is more and more likely to
be in the neighborhood of X(s − 1), there is more and
more stronger correlation between X(s) and X(s− 1). It

would be useful to link the correlation with some charac-
teristic quantity of the distribution of ∆. One of the most
important characteristic quantities for the distribution is
the moment

〈∆2(s)〉 =
L/2−1∑
−L/2

∆2P (s,∆) =
1
N

N∑
i=1

∆2
i (s), (2)

in which the larger integer N is the number of simulations
performed from the initial state, and P (s,∆) is the prob-
ability for the directional shorter distance to take value ∆
at sth update. When there is no correlation between X(s)
and X(s− 1), ∆(s) can take any value in (−L/2, L/2− 1)
with equal probability, and therefore 〈∆2(s)〉 is a constant
for all s. The constant is equal to

1
L

L/2−1∑
i=−L/2

i2 =
L2 + 2

12
·

The correlation between X(s) and X(s− 1) shown above
makes 〈∆2(s)〉 smaller. The stronger the correlation, the
smaller the 〈∆2(s)〉. Since s and t have one-to-one corre-
spondence for fixed L, one can use the proper time t as
the variable for the evolution process. Thus one can define
a new correlation function as

C(t) = 1− 12〈∆2(t)〉
L2 + 2

· (3)

This correlation function has the demanded property
that it increases with the correlation between minimal
sites at two successive update steps. C(t) = 0 if no cor-
relation between X(s) and X(s − 1). The stronger the
correlation, the smaller the 〈∆2(t)〉, therefore the larger
the correlation function C(t). Since two minimal sites at
two consecutive update steps are involved in the defini-
tion of this correlation function, it is a measure of some
kind of spatio-temporal correlation in the BS model. To
calculate 〈∆2(t)〉 and C(t), 0.5 million simulations from
the initial state are done, and the calculated correlation
function C(t) as a function of proper time t is shown in
Figure 2 for systems with size L = 200, 400, 600 and 800.
The number of fitness updates in each simulation is such
that corresponds to a scaled time t = 10. One can see that
C(t) is an increasing function of t. A remarkable property
of C(t) is that it has extremely weak dependence on the
system size L, and the curves for different sizes almost co-
incide, which means that the correlation strength between
X(s) and X(s−1) depends only on the proper time t (or in
other words, on the average number of update steps each
site undergone). This result is not surprising, considering
the following two facts: (1) Such correlation is generated
from the updates of the random fitness on each site; (2) t
is the measure of mean number of updates of the fitness
on each site. Of course, one cannot expect C(t)→ 1 when
t→∞ for fixed finite L. From the update rules of the local
BS model, it is not too difficult to see that ∆ can take val-
ues −1, 0, 1 with equal probability, as shown by the wide
heaps in Figure 1. Thus 〈∆2(t)〉 can only approach 2/3
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Fig. 2. The correlation function C(t) in the local version of the
BS model for the same systems as in Figure 1. The four curves
cannot be distinguished by eyes. A curve from equation (4) is
also drawn as a thick solid curve.

instead of 0. When L is large enough, the limiting value
of C(t) can be approximately taken to be 1.0.

We would like to point out that the correlation func-
tion C(t) shown in Figure 2 can be parameterized quite
well by following expression

C(t) = 1−
(

t0
t0 + t

)δ (1 + 0.24t+ 0.005t2

1 + 2.0t+ 0.1t2

)
, (4)

with t0 = 0.85, δ = 0.83. The value of t0 can tell us when
the behavior of the correlation function changes. As can
be seen from Figure 2 the correlation function takes small
values but increases quickly when t is small. From last
expression one can get C(t) ∼ 2.74t for t � t0. For large
t the correlation function takes large value but increases
very slowly in the form 1 − C(t) ∝ t−δ as can be shown
from last expression for t � t0. Thus the behavior of the
correlation function changes at t ' t0. We can say that
the system approaches its critical state since t ' t0.

One may be interested in the relationship between δ in
this paper and other exponents known for the BS model.
In [10] various exponents were derived from a scaling ar-
gument. It is clear that such a scaling argument is valid
only for systems very close to their critical points. As we
have mentioned above, the quantities calculated in this
paper are obtained for specific t from average over an en-
semble of evolution from the initial state, while those in
previous studies were calculated from average over a long
update process in the stationary state. Results from the
two different averages may be very different. In addition,
the quantities under investigation are also different. For
the study of a system in equilibrium, the same result can
be expected for the same observable from time and ensem-
ble averages provided that the system is assumed ergodic.
In the study of SOC, however, the systems are far from
equilibrium, and the time evolution of such systems may

depend on the history. For the BS model, the evolution de-
tail of a system depends on the configuration of the fitness
in the initial state. Because of such a dependence, different
results for the same quantity may be obtained if the quan-
tity is averaged along two different evolution tracks. If a
system under investigation exhibits a bifurcation behav-
ior, the two observations can be very different. After an
ensemble average at a suitably defined time, however, the
initial configuration dependence is eliminated, and more
reliable results can be expected. In short, the time and en-
semble averages can give different results, even when the
same quantity is concerned, which usually measure differ-
ent aspects of the same dynamics. The exponent δ may
be related to those seen in the damage spreading [22]. In
the damage spreading method one essentially monitors the
time evolution of two or more copies of the same system
with different initial configurations subjected to a specific
dynamics and to the same thermal noise. We used exactly
the same technique in this paper. It has been shown that
the variation of the damage and related quantities with
time, temperature, initial conditions and any other rele-
vant parameters leads to information about the criticality
of the system. But it is also found out that the results
from the damage spreading process can be quite differ-
ent for distinct dynamics [23]. In earlier studies of SOC
such effect has not be taken into account, and the main
focus is on various distributions which are obtained from
observation over only one long evolution of the system.
In the ensemble average of ∆2(s) in this paper the diver-
gency (or damage) among different copies of the system
in the ensemble contributes. Thus some information on
the damage spreading may be included in the exponent δ.
Then we can say that the exponent δ in this paper may
be independent of those for the stationary state. And very
probably, many other independent exponents of such a
type for states before the stationary one may exist.

Similar calculations can be done for the random neigh-
bor version of the BS model. For illustration, only results
with a system with L = 200 and K = 3 are presented
here. The distributions of ∆ are shown in Figure 3 for
t = 2.0, 4.0, 6.0, 8.0. The distributions for this version are
very different from those in Figure 1 for the local version
of the BS model. 1 million simulations from the initial
state are performed. Except ∆ = 0, the distributions are
flat for all t. With the increase of t, the distribution of ∆
has a slightly higher peak at 0 and lower constant value
for other ∆. The particularity of ∆ = 0 in this version
of the BS model can be easily understood from following
two facts: (1) The three sites involved in an update step
have larger probability to be the next minimal site; (2) If
the last minimal site is, by accident, the next minimal site
again, ∆ = 0, otherwise ∆ can take any value because of
the randomness of the two neighbors and of the fitness on
all the sites. So, the distribution for ∆ 6= 0 must be flat,
as shown in the figure. The calculated C(t) is shown as a
function of t in Figure 4. For comparison, the correspond-
ing correlation function in the local version is re-shown in
the same figure. One can see that the correlation in the
random version is much weaker than in the local one. In
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Fig. 3. Distribution of the directional shorter distance ∆ in the
random neighbor version of BS model for systems with L = 200
at proper time t = 2.0, 4.0, 6.0 and 8.0. The distribution is
normalized to the number of simulation events.
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Fig. 4. The correlation function C(t) in the random neighbor
version of the BS model for the system with size L = 200. For
comparison, the corresponding curve for the local version is
re-shown by dashed curve.

the small t region, C(t) for the random version increases
with t and reaches its saturating value quickly. For t > 1
no more increase of C(t) can be observed. So the degree of
correlation between X(s) and X(s − 1) for later updates
remains the same, which is much weaker than in the local
version of the model. Thus, the different behaviors of the
correlation can be used to distinguish the two versions of

the BS model. Since strong correlation in the stationary
state is one of the key features of SOC, one can claim that
the random neighbor version of the BS model is not a SOC
model, as concluded in [12].

4 Conclusion

In conclusion, a new spatio-temporal correlation function
in the BS model between the minimal sites at consecutive
update steps is investigated for the local and nonlocal ver-
sion of the BS model. Similar correlation function can be
used in other minimal models to judge the SOC nature of
the models.
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